CHAPTER TWO
ERROR CORRECTION CODING
2.1 Overview 
This chapter illustrates the information theory and error correction code fundamentals, with an emphasis on convolutional encoding and decoding.
2.2 Information and Coding Theory

Information theory attempts to analyze communication between a transmitter and a receiver through an unreliable channel, and in this approach performs, on the one hand, an analysis of information sources, especially the amount of information produced by a given source, and, on the other hand, states the conditions for performing reliable transmission through an unreliable channel [15].

The block diagram seen in Figure 2.1 shows two types of encoders. The channel encoder is designed to perform error correction with the aim of converting an unreliable channel into a reliable one. On the other hand, there also exists a source encoder that is designed to make the source information rate approach the channel capacity. The destination is also called the information sink.




Figure 2.1 Source and channel coding.
2.3 Entropy and Information Rate
Entropy can be understood as the mean value of information per symbol provided by the source being measured, or, equivalently, as the mean value experienced by an observer before knowing the source output. In another sense, entropy is a measure of the randomness of the source being analysed. The entropy function provides an adequate quantitative measure of the parameters of a given source and is in agreement with physical understanding of the information emitted by a source [15].
2.4 Channels and Mutual Information

The relationship between channels and a mutual information is complementary. Channels represent the media of mutual information transmissions and contain the encoding process for data.    
2.4.1 Information Transmission Over Discrete Channels

In this section, the transmission of information through a given channel will be considered. This will provide a quantitative measure of the information received after its transmission through that channel. Here, attention is on the transmission of the information, rather than on its generation. 

A channel is always a medium through which the information being transmitted can suffer from the effect of noise, which produces errors, that is, changes of the values initially transmitted. In this sense there will be a probability that a given transmitted symbol is converted into another symbol. From this point of view the channel is considered as unreliable. The Shannon channel coding theorem gives the conditions for achieving reliable transmission through an unreliable channel.
2.4.2 Information Channels
Definition 1.1: An information channel is characterized by an input range of symbols {x1, x2, . . . xU}, an output range {y1, y2, . . . , yV} and a set of conditional probabilities P(yj /xi ) that determines the relationship between the input xi and the  
                   [image: image1.emf]
Figure 2.2 A discrete transmission channel [9].

output yj . This conditional probability corresponds to that of receiving symbol yj if symbol xi was previously transmitted, as shown in Figure 2.2.
 The set of probabilities P (yj /xi) is arranged into a matrix Pch that characterizes completely the corresponding discrete channel:   Pi j = P (yj /xi). Each row in this matrix corresponds to an input, and each column corresponds to an output. Addition of all the values of a row is equal to one. This is because after transmitting a symbol xi , there must be a received symbol yj at the channel output.
Therefore,
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2.5 Shannon's Theorem
The source coding theorem and the channel coding (channel capacity) theorem are the two main theorems stated by Shannon [10, 11]. The source coding theorem determines a bound on the level of compression of a given information source. 
The important result provided by the Shannon capacity theorem is that it is possible to have an error-free (reliable) transmission through a noisy (unreliable) channel, by means of the use of a rather sophisticated coding technique, as long as the transmission rate is kept to a value less than or equal to the channel capacity. The bound imposed by this theorem is over the transmission rate of the communication, but not over the reliability of the communication.

2.6 Block Codes

In the block codes, the data source generates blocks of K message symbols .It is assumed that any data compaction or encryption has taken place before the message arrives at the error control encoder.   


2.6.1 Error-Control Coding

One of the predictions made in the Shannon channel coding theorem is that a rather sophisticated coding technique can convert a noisy channel (unreliable transmission) into an error-free channel (reliable transmission). 
Demonstration of the theorem about the possibility of having error-free transmission is done by using a coding technique of a random nature [10, 12]. 

In this technique, message words are arranged as blocks of k bits, which are randomly assigned codewords of n bits, n > k, in an assignment that is basically a bijective (one-to-one) function characterized by the addition of redundancy. This bijective assignment allows us to uniquely decode each message. 

This coding technique is essentially a block coding method. However, what is not completely defined in the theorem is a constructive method for designing such a sophisticated coding technique. 

There are basically two mechanisms for adding redundancy, in relation to error-control coding techniques [13]. These two basic mechanisms are block coding and convolutional coding. Errors can be detected or corrected. In general, for a given code, more errors can be detected than corrected, because correction requires knowledge of both the position and the magnitude of the error.
2.6.2  Error Detection and Correction

For a given practical requirement, detection of errors is simpler than the correction of errors. The decision for applying detection or correction in a given code design depends on the characteristics of the application. When the communication system is able to provide a full duplex transmission (that is, a transmission for which the source and the destination can communicate at the same time, and in a two way mode, as it is in the case of telephone connection, for instance), codes can be designed for detecting errors, because the correction is performed by requiring a repetition of the transmission [15]. These schemes are known as automatic repeat request (ARQ) schemes. In any ARQ system there is the possibility of requiring a retransmission of a given message. There are on the other hand communication systems for which the full duplex mode is not allowed. An example is the communication system called paging, a sending of alphanumerical characters as text messages for a mobile user. In this type of communication system, there is no possibility of requiring retransmission in the case of a detected error, and so the receiver has to implement some error-correction algorithm to properly decode the message. This transmission mode is known as forward error correction (FEC) [16].

2.7 Cyclic Codes
Cyclic codes are an important class of linear block codes, characterized by the fact of being easily implemented using sequential logic or shift registers.

2.7.1 Description of Cyclic Codes

For a given vector of n components, c = (c0, c1, . . . , cn−1), a right-shift rotation of its components generates a different vector. If this right-shift rotation is done i times, a cyclically rotated version of the original vector is obtained as follows:

c(i) = (cn−i , cn−i+1, . . . , cn−1, c0, c1, . . . , cn−i−1) A given linear block code is said to be cyclic if for each of its code vectors the ith cyclic rotation is also a code vector of the same code. Also, remember that being a linear block code, the sum of any two code vectors of a cyclic code is also a code vector. 

2.8 Convolutional Codes
Convolutional coding is a special case of error-control coding. Unlike a block coder, a convolutional coder is not a memoryless device. Even though a convolutional coder accepts a fixed number of message symbols and produces a fixed number of code symbols, its computations depend not only on the current set of input symbols but on some of the previous input symbols.

In this type of coding the encoder output is not in block form, but is in the form of an encoded sequence generated from an input information sequence. The encoded output sequence is generated from present and previous message input elements, in a continuous encoding process that creates redundancy relationships in the encoded sequence of elements. A given message sequence generates a particular encoded sequence. The redundancy in the encoded sequence is used by the corresponding decoder to infer the message sequence by performing error correction. 
            The whole set of encoded sequences form a convolutional code (Cconv), where there exists a bijective relationship between message sequences and encoded sequences. From this point of view, a sequence can also be considered as a vector. Then, message sequences belong to a message vector space, and encoded sequences belong to a code vector space. Message sequence vectors are shorter than code sequence vectors, and so there are potentially many more possible code sequences than message sequences, which permit the selection of code sequences containing redundancy, thus allowing errors to be corrected.  The set of selected sequences in the code vector space is the convolutional code. 
A suitable decoding algorithm can allow us to determine the message sequence as a function of the received sequence, which is the code sequence affected by the errors on the channel. In general terms, convolutional encoding is designed so that its decoding can be performed in some structured and simplified way. One of the design assumptions that simplifies decoding is linearity of the code. For this reason, linear convolutional codes are preferred. The source alphabet is taken from a finite field or Galois field GF(q). The message sequence is a sequence of segments of k elements that are simultaneously input to the encoder. For each segment of k elements that belongs to the extended vector space [GF(q)]k , the encoder generates a segment of n elements, n > k, which belongs to the extended vector space [GF(q)]n. Unlike in block coding, the n elements that form the encoded segment do not depend only on the segment of k elements that are input at a given instant i , but also on the previous segments input at instants i − 1, i − 2, . . . , i − K, where K is the memory of the encoder. The higher the level of memory, the higher the complexity of the convolutional decoder, and the stronger the error correction capability of the convolutional code. Linear convolutional codes are a subspace of dimension k of the vector space [GF(q)]n defined over GF(q). Linear convolutional codes exist with elements from GF(q), but in most practical applications, however, message and code sequences are composed of elements of the binary field GF(2), and the most common structure of the corresponding convolutional code utilizes k = 1, n = 2. 

2.8.1 Linear Sequential Circuits

Linear sequential circuits are an important part of convolutional encoders. They are constructed by using basic memory units, or delays, combined with adders and scalar multipliers that operate over GF(q). These linear sequential circuits are also known as finite state sequential machines (FSSMs) [14]. 
The number of memory units, or delays, defines the level of memory of a given convolutional code Cconv(n, k, K), determining also its error-correction capability. Each memory unit is assigned to a corresponding state of the FSSM. 
Variables in these machines or circuits can be bits, or a vector of bits understood as an element of a field, group or ring over which the FSSM is defined. In these algebraic structures there is usually a binary representation of the elements that adopt the form of a vector of components taken from GF(2). 
A convolutional encoder is basically a structure created using FSSMs that for a given input sequence generates a given output sequence. The set of all the code sequences constitutes the convolutional code Cconv.

FSSM analysis is usually performed by means of a rational transfer function G(D) = P(D)/Q(D) of polynomial expressions in the D domain, called the delay domain, where message and code sequences adopt the polynomial form M(D) and C(D), respectively. For multiple input–multiple output FSSMs, the relationship between the message sequences and the code sequences is described by a rational transfer function matrix G(D).
2.8.2 Polynomial Description of a Convolutional Encoder

A polynomial description of a convolutional encoder describes the connections

among shift registers and modulo 2 adders. For example, figure 2.3 below depicts a feed forward convolutional encoder that has one input, two outputs, and two shift registers.

[image: image3.emf]
Figure 2.3 Convolution encoder diagram [8].
A polynomial description of a convolutional encoder has three components, depending on whether the encoder is a feed forward or feed backward type [8]:
• Constraint lengths

• Generator polynomials

• Feedback connection polynomials (for feedback encoders only)

2.8.2.1 Constraint Lengths
The constraint lengths of the encoder form a vector whose length is the number of inputs in the encoder diagram. The elements of this vector indicate the number of bits stored in each shift register, including the current input bits.

In Figure 2.3, the constraint length is three. It is a scalar because the encoder has one input stream, and its value is one plus the number of shift registers for that input.

2.8.2.2 Generator Polynomials

If the encoder diagram has k inputs and n outputs, the code generator matrix is a k-by-n matrix. The element in the ith row and jth column indicates how the ith  input contributes to the jth output.

For the systematic bits of a systematic feedback encoder, match the entry in the code generator matrix with the corresponding element of the feedback connection vector. In other situations, the (i,j) entry in the matrix can be determined as follows: first a binary number representation should be built by placing a 1 in each spot where a connection line from the shift register feeds into the adder, and a 0 elsewhere.
 The leftmost spot in the binary number represents the current input, while the rightmost spot represents the oldest input that still remains in the shift register. 
The second step can be achieved by converting  this binary representation into an octal representation by considering consecutive triplets of bits, starting from the rightmost bit. The rightmost bit in each triplet is the least significant. If the number of bits is not a multiple of three, place zero bits at the left end as necessary. (For example, interpret 1101010 as 001 101 010 and convert it to 152.) 
For example, the binary numbers corresponding to the upper and lower adders in Figure 2.3 are 110 and 111, respectively. These binary numbers are equivalent to the octal numbers 6 and 7, respectively. 

2.8.2.3  Feedback Connection Polynomials

In the case that a feedback encoder is represented, a vector of feedback connection polynomials will be needed. The length of this vector is the number of inputs in the encoder diagram. 
The elements of this vector indicate the feedback connection for each input, using an octal format. First a binary number representation must be built as in step 1 above, then the binary representation must be converted into an octal representation as in step 2 above. If the encoder has a feedback configuration and is also systematic, the code generator and feedback connection parameters corresponding to the systematic bits must have the same values. For example, figure2.4 shows a rate 1/2 systematic encoder with feedback.

[image: image4.emf]
Figure 2.4 Feedback connection polynomials [8].
This encoder has a constraint length of 5, a generator polynomial matrix of [37 33], and a feedback connection polynomial of 37. The first generator polynomial matches the feedback connection polynomial because the first output corresponds to the systematic bits. The feedback polynomial is represented by the binary vector [1 1 1 1 1], corresponding to the upper row of binary digits in Figure 2.4. These digits indicate connections from the outputs of the registers to the adder. 
The initial 1 corresponds to the input bit. The octal representation of the binary number 11111 is 37. The second generator polynomial is represented by the binary vector [1 1 0 1 1], corresponding to the lower row of binary digits in the diagram. The octal number corresponding to the binary number 11011 is 33.
2.8.3 Trellis Description of a Convolutional Encoder

A trellis description of a convolutional encoder shows how each possible input to the encoder influences both the output and the state transitions of the encoder. Figure 2.5 depicts a trellis for the convolutional encoder from the previous section. Encoder has four states (numbered in binary from 00 to 11), a one-bit input, and a two-bit output. (The ratio of input bits to output bits makes this encoder a rate-1/2 encoder.) Each solid arrow shows how the encoder changes its state if the current input is zero, and each dashed arrow shows how the encoder changes its state if the current input is one. The octal numbers above each arrow indicate the current output of the encoder.

[image: image5.emf]
Figure 2.5 Trellis description of a convolutional encoder [8].
As an example of interpreting this trellis diagram, if the encoder is in the 10 state and receives an input of zero, it outputs the code symbol 3 and changes to the 01 state. If it is in the 10 state and receives an input of one, it outputs the code symbol 0 and changes to the 11 state. Note that any polynomial description of a convolutional encoder is equivalent to some trellis description, although some trellises have no corresponding polynomial descriptions.
2.8.4 Convolutional Decoding

The Viterbi algorithm is a maximum likelihood decoding procedure that takes advantage of the fact that a convolutional encoder is a finite state device. If the constraint length, M, is relatively small, the decoder can perform optimal decoding with relatively few computations. The Viterbi decoder performs either hard decision or soft decision decoding. A hard decision decoder accepts bit decisions from the demodulator. These decisions assign either a 0 or 1 to each received bit. Soft decision decoding involves using demodulator outputs that are proportional to the log likelihood of the demodulated bit being either 0 or 1. The log likelihood is the logarithm of the probability of a bit being, for example, 0 if the demodulated bit was 1. If the transmitted bit is variable x and the demodulated bit is variable z, this expression is the log likelihood that x is 0 given that z is 1: Soft decision decoding generally produces better performance at the cost of increased complexity. The next two sections discuss soft and hard decision decoding in turn.

2.8.4.1 Soft Decision Decoding
For soft decision decoding, the received codeword can be any real number. Because of channel fading, noise, interference, and other factors, a signal transmitted as a 0, for example, may be received as some nonzero real value x. From a priori knowledge of the channel, one can estimate the probabilities of the value x falling in certain regions. A similar analysis holds for the transmission of a signal 1. The notation P(rcv|msg) should be used to represent the probability of receiving (rcv) data while sending message data. Using the definition, we can describe a transmitting channel by a set of transfer probabilities, as in Figure 2.6.
[image: image6.emf]
Figure 2.6 Soft decision decoding [8].

The probability of signal 0 being received in range (-Inf, 1/10] equals 2/5 or P((-Inf, 1/10]|0) = 2/5. The probability of signal 1 being received in range (-Inf, 1/10] equals 1/16 or P((-Inf, 1/10]|1) = 1/16. Table 2.1 presents the probability structure associated with the communication channel:

Table 2.1 The probability structure associated with the communication channel.
	Receiving Probability When Sending 0
	Receiving Probability When Sending 1

	P((-Inf, 1/10]|0) = 2/5
	P((-Inf, 1/10]|1) = 1/16

	P((1/10, 1/2]|0) = 1/3
	P((1/10, 1/2]|1) = 1/8

	P((1/2, 9/10]|0) = 1/5
	P((1/2, 9/10]|1) = 3/8

	P((9/10, Inf)|0) = 1/15
	          P((9/10, Inf)|1) = 7/16


Round brackets indicate an open range. Open ranges do not include the boundary points. Square brackets indicate a closed range. Closed ranges include the boundary points. The optimum path for a soft decision maximizes the metric of the received signal r and the corrected signal c. For a codeword length N transmission, the

metric M(r|c) is defined as
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where ri is the ith element of the received codeword vector and ci is the ith element of the corrected vector. The transmission probability (trans_prob) has a three row matrix. The first row of trans_prob is the lower boundary of the received range. The second row is the probability of receiving signal in the range specified in the first row given that the transmitter sent a 0 signal. The third row is the probability of receiving signal in the range in the first row given that the transmitter sent a 1 signal (Equation 2.3).
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Continuing with the channel example, the transfer probability is:
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2.8.4.2 Hard Decision Decoding
 For hard decision decoding, the received codewords are binary data. The probability of signal 0 being received as 0 is q, or P(0|0) = q; P(1|0) = 1-q. The probability of signal 1 being received as 1 is q, or P(1|1) = q; P(0|1) = 1-q. It is always assumed that q>1/2. In case q<1/2, the ones and zeros can be simply reversed prior to the decoding process. The optimum path is the one that has the minimum Hamming distance between the received codeword and the corrected codeword (know as the survivor). The Hamming distance between two binary vectors is defined as the number of indices where the two vectors do not match.

2.9 The Viterbi Algorithm
 The Viterbi algorithm is suitable for both soft and hard decision decoding. The criterion used for decision making is the metric for soft decision decoding and the Hamming distance for hard decision decoding. A step-by-step description of the Viterbi algorithm is [8]:
1. Initial conditions should be assigned: i = 0; the current computation index. j = 0; the current decision index. x1(0) = 0; the initial state. m1=0; the initial criterion (metric for soft decision decoding and Hamming distance for hard decision decoding).
2. Using all valid xb(i) ,all possible input paths to xe(i+1) must be computed. If there is more than one input path to xe(i+1), the one that is optimal under the criterion which  is in use must be kept. This is the maximum metric value, called the metric accumulation, in soft decision decoding and the minimum Hamming distance in hard decision decoding. The input path leading to xe(i+1) and the criterion value of that path should be kept. Note that b and e are possible numbers between 1 and 2 length(x).
3. Tracing from xe(i+1), all paths that cannot reach step i+1 should be removed.
4. For a limited memory case, where evaluating paths is occurred of fixed length only, the buffer is full or not must be checked, i.e., if i-j is greater than the fixed path length. If it is full, the optimal value calculated under the criterion that in use to decide which state to keep and clear the memory space of path segments that are no longer being used (this means you must set j=j+1) must be used. For an unlimited memory case, the beginning of the whole path x(j) to x(j+1) is a single connection must be checked . If it is, the path as the result of the decision. j=j+1 will be kept.`
5 If i+1 is not the encode of the codeword transfer, i=i+1, then step 2 must be revised, otherwise step 6 is the step that will be revised then.
6 xe(i+1)=0 will be taken  as the final state, trace back to j all of the paths in the decision. A trellis is the set of paths of the possible transitions from one state to another. You can view the trellis using viterbi. In trellis plots, the path with bold lines is the decision path, which is always the optimal path for the given conditions.
2.10 Summary

In this chapter, a brief overview of information theory and error correcting codes are given. Specifically, cyclic codes, linear block codes and convolutional codes are explained. 


In the next chapter, interleaving will be described. Periodic and random interleavers, for example, can be used to provide time diversity against burst errors in the channel.
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